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Dynamical phase diagram of the two-dimensional p-state 
clock model 

Y Leroyert and K Rouidif 
Labmatoire de Physique ThCoriqu4 UniversitC de Bordeaux I, Rue du Solarium, 
F-33175 Gradignan Cedex. France 
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Abstract .  We have performed a Monte Carlo study of the dynamical phase diagam 
of the two-dimensional pstate  dock models for 4 6 p Q 10, by comparing the time 
evolution of two configurations subjected to the same thermal noise. For p = 4 ,  we 

find the expected Gwo phase structure, similar to the Ising cme,  with a transition 
temperature which coincides with the known static one within the error bars. The 
dynamical critical exponents are measured. For p 5 we observe, between the low- 
temperature frozen phase and the high-temperature disordered one, two new phasa. 
which are not present for p Q 4. The first is connected to the expected emergence 
of a spin-wave phase, and the other may be a purely dynamical effect although its 
connection to the soft phase might suggest the existence of a related equilibrium 
property. The transition temperatures are determined and are found to satisy a 
phenomenological duality-like relation. 

1. Introduction 

The Monte-Carlo dynamics in spin model simulations has been extensively studied, in 
connection with the static critical properties of the system, principally with a view to 
improving the performance oi the compuiationai meihod ii]. iieceniiy a new method 
of investigating the dynamics ofspin systems has been proposed [2,3,4].  It is based on 
the comparison of the time evolution of two initially different configurations subject 
to the same thermal noise. A distance between the two configurations is defined. 
From the behaviour of this quantity as a function of the temperature and/or the 
initial conditions, one can infer information on the dynamical phases of the model. 
fiLbcrLLau"c.ry, I, bIIC sadrhrlrp Lvrrlrgulavru'rr a,< "CLy L1"Dli Y" CaLll  " U l l C L ,  ",IC: La,, ,U"& 

for the occurrence of chaotic behaviour, which may simulate the propagation of an 
original small 'damage' [5]. 

The two-dimensional king model, which was used to test the method in [3], exhibits 
the expected twuphase structure: a low-temperature phase where the two configura- 
tions have a non-zero probability to belong to different valleys in the energy landscape, 

volume limit); a high-temperature phase in which the two configurations meet very 
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quickly. The transition temperature, determined via finite-size scaling arguments, 
coincides with the Curie temperature Tc = 2.269. 

The twc-dimensional X Y  model has been investigated by Golinelli and Derrida [4] 
who found three different phases: the low-temperature one, where the distance he- 
tween two configurations after a given time, depends on the initial conditions and is 
non-zero; an intermediate phase where the distance no longer depends on the initial 
conditions and hut is still non-zero; and a high temperature phase where the two 
configurations meet very quickly. The transition temperature between the low and in- 
termediate phases is close to the Kosterlitz-Thouless one. The authors of [4] question 
the origin of the intermediate phase and do not exclude the possibility that i t  is related 
to some equilibrium property of the system. Although a more recent result [6] might 
favour a purely dynamical interpretation of this phase it is of interest to determine 
which mechanism allows i t  to exist in the X Y  model and not in the king one. 

The Zp symmetric clock model is defined by the classical Hamiltonian 
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where ( i , j )  runs over the lattice sites and their nearest-neighbours, and J is a pos- 
itive ferromagnetic coupling. si is the unit vector spin at  site i whose orientation is 
quantizesd to the p values 

(2) 
2a 0 .  = n i -  
P 

n; = 0 , 1 , .  . . , p  - 1 .  

In terms of the angular variable Bi the partition function of the model is 

where 
This model interpolates between the king model ( p  = 2) and the XY model 

(p = CO). Therefore, investigating the dynamical phase diagrams of these systems as 
p increases might shed some light on the change of dynamical behaviour and on the 
connection between dynamical phases and equilibrium properties. 

The equilibrium phase diagram of the p s t a t e  clock model is rather well known. 
For p < 4 it  has an Ising-like critical behaviour with precisely known exponents and 
critical temperature [7]. For p = 5 one expects the emergence of a soft spin-wave phase 
between the low-temperature frozen one and the high-temperature disordered one 
[S, 9,101. As p increases beyond p = 5,  the lower transition temperature decreases to 
zero to let only the two-phase (spin-wave, free-vortice) structure survive in the p = m 
limit. The higher transition temperature decreases from T,(Z,) = iTc(Ising) = 1.135 

In this paper we have investigated the dynamical phase diagram of the p s t a t e  
clock models numerically for p = 4, 5,  6, 7 and 10 by the method of distances. The 
technical details are gathered in section 2. In section 3, on the basis of a detailed 
investigation of the Z., and Z,, models we relate the different known static phases to 
the dynamical ones, characterized by the evolution of distances. A dynamic critical 
exponent is determined from the finite-size scaling analysis of a relaxation time for 

= J/T (in the following, we set J = 1). 

to TC(Z,) = TKT Y 0.9 [ll]. 
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the Z, model. For the Z,, model, an unexpected high-temperature phase occurs 
above the spin wave phase, extending from T Y 1.0 up to  T z 2.0, very similar to 
the one observed in [4]. Section 4 is devoted to the Z,,6,, models. The same phase 
structure is observed as in the Z,, case, already in the Z5 model, marking a clear 
difference with the king-like behaviour of the Z,,s,, models. As p increases above 5 
this phase structure persists, while the lower transition temperature decreases to zero, 
as expected. We draw conclusions in the last section, and we propose a duality-like 
relation between the different transition temperatures. 

2. The method 

The Zp clock model (equations (1)-(3)) is simulated on a L x L lattice ( L  = 10,20) 
with periodic boundary conditions by means of the heat bath method. The high- 
temperature behaviour of this dynamics is identical to  the Metropolis one used in [4] as 
two configurations evolving in the high-temperature phase will eventually meet. This 
is a necessary condition for a comparison of our results with those of [4]. Furthermore, 
for our discrete model, the heat bath algorithm is slightly faster, a t  least for p 6 10. 

The variable ni a t  time t ,  (Si = n i ( 2 a / p ) ) ,  is updated a t  time 1 + 6t  (6t = 1/L2),  
according to the following rule. 

( i )  for all integers n E [0,p - 11 compute once the probabilities 

where 5 is the set of sites neighbouring the site i ,  and Z{q . )  is such that 

"=O 

and then compute the cumulated probabilities 

P 0 { K }  = 0 
k-1 

(ii) Draw a uniform random number z E [0,1]. If Pk 4 z < PkCl then set the new 
value of ni to  k .  

The dynamics is studied in the following way. Take two different initial configura- 
tions C(0) = {8,(0)} and C'(0) = {8:(0)} of the system and let them evolve according 
to  the heat bath dynamics, where a t  each step, the random number z is the same for 
both configurations. The distance between the two configurations is defined as the 
generalization of the one used for the king model 

1 
4L D(t )  = 7 Isi - .:I2 (4) 

1 
2L2 

= - C[l - cos(Oi(1) - 8:(t))]. ( 5 )  
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This quantity is then suitably averaged over a sample of sequences of random numbers 
as explained below. 

On a finite lattice the probability for two configurations to meet is one in the 
infinite time limit. Moreover, once the distance is zero it remains zero at  any later 
time. Therefore, if we start with N different initial pair of configurations, the number 
of pairs which have not yet met a t  time t (surviving configurations) N,,(t), decreases 
monotically as the time grows, with a rate dependent on the phase in which the 
system evolves. Consequently, the value of the distance, averaged over the whole 
sample, will depend on time. As there is no obvious physical time scale to set a 
cut-off, we proceed in another way. Actually the time evolution of the surviving 
configurations is very stable in all phases, at least after a thermalization time t o  which 
depends on temperature. We therefore compute the averaged distance only over those 
configurations. As this quantity is rather constant with time it  will not depend on the 
time cut-off t,,,. 

We now define our averaging procedure. We start with a sample of N pairs of 
initial configurations. We let them evolve with different sequences of random num- 
bers, up to t = t,,, where only N, = Ne,(tm,,) have survived. If Ns = 0 we set 
(D) = 0. Otherwise, for each surviving pair we first perform a time average from the 
thermalization time to  up to t,,,, and then a sampling average over the Ns resulting 
numbers. The error bars are obtained from the sampling average. This determina- 
tion of the averaged distance is quite independant oft,,, and is very precise in the 
low-temperature phase, even with samples as small as N = 20. In strongly fluctu- 
ating phases, we take N = 100 to 200, depending on the linear lattice size. We set 
t,,, = 500 for the smaller lattices ( L  = 10) and we adjust it by finite-size scaling 
arguments for the larger ones (L = 20,30-see section 3). This value oft,,, is chosen 
by comparison with another relaxation time which drives the time dependence of the 
survival probability 

Y Lemyer and K Rouidi  

Assuming an exponential-like behavioui 

we determine T by a two-parameter fit, as a function of the temperature. For our 
choice, t,,, is taken to be order s(T,). 

Finally, along with the averaged distance (D), we determine the ‘susceptibility’ 

which measures the fluctuations of D ( t )  and is very sensitive to the change of phase. 
The statistical errors on uD are estimated from the time averagewhich gives an 
underestimation-and by averaging over several sets of random number sequences: 
we make three to five measurements for some selected temperatures. We shall see in 
the next sections that the behaviour of all these quantities as functions of the time, 
temperature and initial conditions provide a set of information sufficient to clearly 
characterize the different phases of the system. 
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3. Charac ter iz ing  the phases  

3.1. The Z4 model 

The Z, clock model is a special case of the Ashkin-Teller model, and has a second-order 
phase transition a t  T,(Z,) = [In(fi+ 1)I-l = 1.135 [7] separating a low-temperature 
frozen phase from a high-temperature disordered one, similar to the Ising model. In 
~tgurc I w e  SILVW m e  averageu uis~aiice \U] againsi ihe iemperaiure for i = i 0  aiid 
L = 20 and for two different initial conditions. 
c 1 ... ̂ ^  L _ _ _ I L .  > : . L . - . -  ,n\ ~ ~~I~~~ 

Initialization 1: initial configurations completely polarized in opposite directions 

Initialization 2: initial configurations completely polarized in orthogonal directions 
ei(o) = 0, e;(o) = T ,  D(O)  = 1. 

e,(o) = o; e;(o) = I ~ 2 j  q o !  = 0.5, 

For both initializations, we observe an  abrupt fall in the region 1.1 4 T 4 1.20, very 
close to T, = 1.135. This behaviour is similar to  what is observed in the two or 
three dimensional Ising model [2,3]. I t  is also in agreement with the picture of valleys 
in the free energy landscape, which attract the time evolution of the configurations 
and consequently of the distances between the Configurations, depending on the initial 
conditions. As an illustration of this effect, we show in figure 2 the distribution of the 
non-zero distances after t = 500 for a 10 x 10 lattice for pairs of configurations initially 
random and opposite. At T = 1.0, the double peak seen in figure 2 clearly shows that 
after some time the non-zero distances are distributed along the two attractors at 
(D) = 1, corresponding Q:-Q, = I Vi, and (D) = 0.5 corresponding to +Qi = 112 Vi .  
For the equivalent distribution at T = 1.2 (hatched histogram), in the disordered 

(always present) (D) = 0 attractor. 
phae, these aiiraeiorj have disappeared and the eonfigoiaiions smoo~;i~y go io tiie 

1.2 

- 
n s  c I 

0.6 I 
E :  

0 1 
. L=20 I " i t .1  

d L i l o  hi, 2 
O 2  1 , , 0 L_:o 1 , , , , ~ ~~, . ,; , 1 

0 0.2 0 4  0 6  0 "  1.4 
T-..."".-* 
1="1P"1"LUlr 

Figure 1. The averaged distance against temperature for the Z, model. Open 
circles, L = 10, aligned and opposite initial configurations; open triwles, L = 10, 
aligned and orthogonal initial configurations; full circles, L = 20, aligned and opposite 
initial configuratims The dotLed Line indicates the static critical temperat- Tc = 
1.135. 
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24 model 

0 T=I.O 

T=1.2 

Distances 

Figure 2. The distribution of distances after k.500 for the Z, model on a 10 Y 10 
lattiae. The hatched histogram corresponds to T = 1.2 (symmetric phase) and the 
other to T = 1.0 (broken symmetry phase). 

These observations establish a good agreement between the static and the dynam- 
ical behaviour and we turn now to more quantitative information. First we notice 
that a precise determination of the transition temperature is difficult to achieve by 
using only the averaged distance. In fact, for T > T,, the distances fluctuate strongly 
and reach zero after a short time; but the average, being taken only over the non-zero 
distances, remains sizeable. We then decide to set the distance to  zero when the num- 
ber of surviving configurations is less than 10% of the initial sample. This somewhat 
arbitrary cut-off prevents us from making a precise quantitative determination of the 
position of the critical temperature and then of the other critical parameters, from 
the averaged distance only. Therefore we turn to uD which measures the fluctuations 
of D(t )  and should be very sensitive to  the phase change for the above reasons. 

We show the variations of uD against the temperature in figure 3 for L=10 and 
L=20. A sharp peak signals the critical temperature with a rather small finite-size 
effect. Consequently, in the following, we shall characterize the transition temperature 
between a ferromagnetic and a disordered phase by the temperature where uD exhibits 
an abrupt jump. 

Finally, we determine the dynamic critical exponent of the exponential slope r of 
the survival probability, equations (6) and (7). Assuming a finite-size behaviour 

r(T, L )  = L ’ ~ ( I T  - T,IL’”) 
we have measured T(T = T,) for L = 10,15,20,30 for the two initial conditions, 
initializations 1 and 2 defined above. From the results, displayed in figure 4 we get 

z = 2.78 & 0.11 for initialization 1 
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0 2  , 

TC j , , , g , ' {  
03 U.6 0.8 1 . 2  

Temperature 
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Figure 3. The distance susceptibility OD BS a function of the temperature for the 
Z, model and L = 10 (open circle) and L = 20 (full circles). The full and broken 
lines are guides to the eye. The dotted line indicates the position of Tc. 

P 

10 
Lattice size 

Figure 4. The exponential slope of the survival probability for the Z, model at 
T = 7'c = 1.135 BS a fundion of the lattice size. for L = 10,15,20,30. The full 
circle correspond to initial configurations aligned and opposite; the open circles to 
aligned initial conliyrstions but with 8, - 6': = n/2. The straight lines correspond 
to fitting T N L' with z = 2.29 (open circle) and z = 2.78 (full circles). 

I = 2.29 f 0.07 for initialization 2 .  

These small errors are only of statistical origin and they presumably underestimate 
possible corrections to the asymptotic scaling law due to the rather small lattice sizes. 
However, the value of z for initialization 2 is compatible with that obtained in 13) and 
this may be an indication for some kind of universality similar to what is found for 
the Potts model dynamics in [12]. The larger value for the exponent in the case of 
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initialization 1 may be understood by the fact that  configurations leaving the ( D )  = 1 
attractor have a non-zero probability to  fall into the ( D )  = 0.5 one, before eventually 
being trapped in the zero-distance state. Such intermediate attractors, between the 
fully polarized opposite spin configuration one ( ( D )  = 1) and the zero-distance one 
occur in the Zp models only for p 2 4. 

3.2. The Z,, model 

The Zp model is known to have a Kosterlitz-Thouless (KT) like phase transition for p 
large enough [13]. This critical behaviour is assumed to  be present already in the Z,, 
model which has been investigated in [14]. Three phases are observed: the spin wave 
phase is found between a low-temperature ferromagnetic one, and a high-temperature 
symmetric phase. The higher transition temperature is close t o  that of the XY model 
(0:s < T < 1 ~ 0 ) ~  We now tnrn to  the  dynimic behzviocr of ?he mode!. 

Y Leroyer ond h' Rouidi 

I .* 

Z10 Model 
0 L i l o  l " iL .1  

* L i z 0  Init 1 

Figure 5. The aMraged distmce as a fundion of the temperature for the ZIO model. 
Open and full circler correspond to L = 10 and L = 20 lattices respectively, and to 
initial conligurations aligned and opposite. The triangles are for an L = 10 lattice 
with initial configurations fully polarized along directions making an angle of n/5. 
The dotted line indicates the position of the first transition at TI = 0.24. 

We display in figure 5 the averaged distance as a function of the temperature 
for the L = 10 and L = 20 lattices and fully polarized opposite spin initialization 
(initialization 1) .  A sharp drop, observed for T Y 0.24, signals a first transition 
which is confirmed by the behaviour of uD shown in figure 6. However the nature 
of the high-temperature phase is clearly different from a standard paramagnetic one, 
as neither ( D )  nor uD decreases to zero (see subsection 3.1). The time dependence 
of the distances in this phase is revealed in figure 7 where we have plotted the time 
history of a single pair of configurations a t  T = 0.25. As both configurations evolve, 
their distance jumps from one attractor to  another. These attractors correspond to  
the distance between configurations such that 

7T O! -8. = k- V i  k E [1,4] 
5 t i  
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b" 
0.4 1 I 210 Model 

O.' t!, , , , , , , , , 8 0 

0 .  O 
6. 

" L 
0 0 2  0.4 , I*  ,ox I 1.2 I.* 16 I X  

Temperature 

Figure 6 .  The distance susceptibility OD as a function of the temperature for the 
Zlo  model for L = 10 (open circles) and L = 20 (full circles). 

F 0.6 

Figure 7. The time evolution of the distance between two configurations which are 
initially fully polarized in opposite directions and at T = 0.25 and for L = 20. The 
dashed lines indicate the position of the different attractors (Dk) = sin2(h/10). 

which yields 

(Dk) = s i n * ( h / l O ) .  

In figure 8 we show the distribution of the distances a t  t = 1000 for a sample of 
200 pairs of configurations at T = 0.25. The  histogram is sharply peaked along 
the attractors (Dk), in agreement with behaviour seen in figure 7 and which can be 
interpreted in terms of a strongly fluctuating phase. Indeed, in the spin wave phase 
the correlation length is infinite and the magnetization fluctuates without limit. The 
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spin wave phase is characterized by a strong dependence on initial conditions. Indeed, 
this discrepancy reflects the arbitrariness of the choice of the time cut-off t,,,. As we 
take t,,, longer than the characteristic relaxation time for the transition between two 
attractors, our distance is subjected to the fluctuations seen in figure 7 irrespective of 
the initial conditions. In [4], f,,, being smaller than this relaxation time, the system 
appears to be blocked in the attractor selected by the initial conditions. 

A second transition, which is less well-localized, occurs for 0.9 < T < 1.2. Its 
presence is not visible in the variations of (D) and i t  manifest itself in figure 6 as a 
small drop in the behaviour of uD with the temperature. It is more clearly evident 
in figure 9 ,  in the variation of the survival probability with T which slowly decreases 
as the temperature grows from T = 0.24 t o  T E 1.0. A change of regime is marked 
by a sudden increase of pS(tmax) which remains maximum for 1.0 < T < 2.0. For 
T U 2.0 an abrupt fall of pS(fmax) down to zero, signals the transition to the high- 
temperature Paramagnetic phase. In this intermediate region, between T = 1.0 and 
T Y 2.0, the system evolves with small fluctuations, as in a ferromagnetic phase, but 
with no dependence on the initial conditions. This unexpected regime is similar to 
the one found in [4]. 

It may result from a partial breaking of the full Z , ,  symmetry into a Z, or Z, 
residual one. However, we shall see in the next section that a similar behaviour is 
observed for the Z5 and the Z ,  models where such a mechanism is not allowed. In the 
next sections, we discuss the possible connection between this phase and some equi- 
librium property of the system. Alternatively, i t  could result from a pure dynamical 
effect as the analysis of Golinelli [6] may suggest. 

To conclude this section, we stress that  the method of distances leads to a clear 
identification of four  different dynamic phases in the Z,, model, with three tran- 
sition temperatures, T, = 0.24, T2 = 1.05 and T3 = 2.0. The lowest and highest 
temperature phases correspond to the static ferromagnetic and paramagnetic ones, 
respectively. The first intermediate phase, for TI < T < T,, is related to the expected 
spin wave phase, whereas the other intermediate phase for T2 < T < T’ has no known 
equilibrium equivalent. The transition temperature T,, is difficult to locate precisely 
due to large finite-size effects, but our rough determination is compatible with the 
static value found in ref [14] T = 1.0. 

4. The models Z p  for  p = 5,  6 ,  7 

The full 2, symmetric model as well as its ‘clock’ restricted version, have been in- 
vestigated using renormalization group methods [a], mean field approximations [9] 
and perturbative expansions [IO]. AI1 of these analyses confirm the emergence of a 
soft phase in a very narrow range of temperature, with a Kosterlitz-Thouless type 
transition. 

We have performed the same analyses as in section 3 for the Z5 model. The results 
are displayed in figures 10, 11 and 12, for the averaged distance, uD and pS(fmax) re- 
spectively, and may have to be compared t o  their equivalent for the Z ,  model (figures 2 
and 4) and for the Z,, model (figures 5, 6 and 9). The data are clearly incompatible 
with a unique classical second order transition at  the self-dual temperature T, = 0.923, 
as in the Z,  model. Instead, we observe the same behaviour as in the Z,, case for all 
our results. We distinguish a first transition at T, zz 0.8, marked by the abrupt jump 
in uD, (figure l l) ,  followed by a soft phase, clearly indentifiable by the persistently 
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"zl L 0 0.2 0.4 0.6 

25 Model 
0 L=10 

e L-20 

Figure 10. As figure 6, but for the ZS model. 

0.1 

0.4 I 25 Model 

0 L-70 . i=20 

Figure 11. As figure 7 ,  but for the Z, model. 

large value of bD over a rather broad interval of temperature. The second transition 
is signalled by the sudden rise in the survival probability for 1.0 < Tz < 1.2, which 
remains maximum up to T3 2 1.8 where it falls to zero. 

In conclusion, the dynamic phase diagram of the 2, model exhibits the same 
structure as in the Z,, case, with three transitions at TI E 0.8, 1.0 < T.  6 1.2 and 
T3 2 1.8. 

The first point concerns the clear evidence for the strongly fluctuating regime 
found between TI and Tz ,  which is presumably linked to the emergence of a spin-wave 
like phase, but in a range of temperature wider than expected in the static case [lo]. 

The second point concerns the intermediate phase between Tz and T3, already 
observed in the Z,, and XY models, but not present in the Zp models for p 6 4. This 
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Figure 12. As figure 10, hut for the Z, model. 

0 OM 008 0.11 0.16 0 2  0.14 0 2 8 p - '  

Figure 13. The dynanrical transition temperatures of the 2, models as a function 
of I / p  and the XY model (p = 00) result of Golineili and Delrida. 

phase has no obviously known static equivalent, hut since it occurs only in conjonction 
with the soft phase one could be tempted to connect the two transition points T2 and 
T3 within a same interpretation. The suggestion of Garel et a1 [I51 of the existence 
of a disordered line crossing the paramagnetic phase is an appealing one and deserves 
further investigation. 

We have reproduced the analysis for the Z, and the Z, models and found exactly 
the same dynamic phase diagram as in the Z, and Z,, cases. The transition tem- 
peratures are presented in figure 13 as a function of l l p  with the asymptotic value of 
the XY model obtained by Golinelli and Derrida (41. The transitions at TI and T3 
are clearly marked and, being subject to small finite-size effects, their determination 
is rather precise. In contrast, an accurate measurement of T2 is difficult due to the 
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essential point nature of the singularity, and one would need very large lattices and 
finitesize scaling analysis t3 get reliable and precise numbers [16]. Since our purpose 
is not a determination of the critical exponents, we only give a rough estimate of T2. 

We first observe in figure 13, that the transition temperature TI decreases as p 
grows, in conformity to what is expected for the associated static critical temperature, 
whereas the interval delimiting Tz,  although quite stable, seems to slowly decrease 
and may reach, as p -+ 00, a value compatible with the measured dynamical critical 
temperature of the XY model TiT Y 0.95 [4]. The upper transition temperature 
seems to extrapolate to a higher value than the XY one. 

Duality arguments are used to relate the static critical temperatures TI and Tz of 
the fully Zp symmetric models [9, lo], based on the Hamiltonian formulation, and of 
the generalized Villain model [E, 171. For this last model, one can derive the relation 

Y Leroyer and K Rouidi 

T,T, = T&, (8 )  

where T,, ,= 2%/p is the point where the model is symmetric under the duality 
transformation. 

For the classical Z p  clock model the duality transformation generates additional 
couplings and it is no longer a symmetry of the Hamiltonian. Therefore there is 
no relation equivalent to (8). But for each value of p -  one can find a temperature 
where these additional couplings are zero (exactly for Z,) or small, making the model 
approximately self-dual. Let us call T,, this temperature obtained by solving the 
duality equations of [9]. We find that the dynamical transition temperatures TI and T, 
and the self-dual one defined above, are in good agreement with a relation equivalent to 
equation 8 ,  IC for p = 5,6,7,!0 we &?ai: T&/T,T, = 0.96,0.$5,0.08,!, respec?iue!y. 
We interpret this phenomenological result as a confirmation of the link between the 
dynamic transition temperatures TI and T2 and their equilibrium equivalent. 

5. Conclusion 

The heat bath dynamics of the Z p  symmetric clock models has been studied for p = 4, 
5 ,  6, 7 and 10 by comparing the Monte-Carlo time evo:u;ton of two configurations, 
initially in different states, and evolving according to the same thermal noise. 

The dynamic phase diagrams are quite different for p = 4 and for p > 5. In 
the first case, one observe two phases, which are identified as the ferromagnetic and 
paramagnetic equilibrium ones, with a transition temperature which coincides with 
the static one within the precision of the method. Although not presented here, we 
have obtained equivalent results for the Z, and Z, (king) models as a check of ou r  
method. 

For p 2 5, we find four different phases. Between the low-temperature ferromag- 
netic phase and the high-temperature paramagnetic one, a strongly fluctuating phase 
occurs, related to the soft spin-wave equilibrium one, together with a new unexpected 
phase, similar to the one founk in the XY model [4]. It is characterized by a very 
sharply peaked distribution of distances, small fluctuations in the time evolution, and 
an averaged distance which decreases roughly linearly, independent of the initial con- 
ditions. 

As this phase only appears, in the sequence of the Z p  models, in conjunction with 
?he soft phae ,  one mzy thi.1. of a:! interpretation i. terms o f s o ~ e  equi!ibrium stete 
of the gas of vortices. This has been suggmted by Garel et a l  [15] for the XY model. 
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However, a similar effect appears in very different systems like the spin glasses [2], 
or in a dilute ferromagnetic model [6], where it has been exactly shown to have a 
purely dynamical origin. Moreover, in a recent study of the XY model based on a 
dynamics which praerves the O(2)  invariance [18], this phase is not observed. All 
these results suggest interpreting this phase as a dynamical one, but its real nature is 
still far from clear and deserves further study. 

The method of distances has given a qualitatively good insight into the dynamics 
of the clock model, but accurate quantitive results are not easy to obtain, mainly 
due to the large fluctuations and finite-size effects inherent to the Kosterlite-Thouless 
transition. However, our results for the transition temperatures are in agreement with 
a phenomenological duality-like relation inspired from the generalized Villain model. 
This support the connection between the dynamic transitions and the equilibrium 
ones. 

Finally we notice that the soft phase is clearly observable in the clock Z, model, 
unlike the general Z, symmetric one where i t  appears as a small effect [lo]. We 
conclude that the distance method is very sensitive to the phase changes and may be 
a fruitful technique for exploring unknown phase diagrams. 
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