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Dynamical phase diagram of the two-dimensional p-state
clock model

Y Leroyert and K Rouidif

Laboratoire de Physique Théorique§ Université de Bordeaux I, Rue du Solarium,
F-33175 Gradignan Cedex, France

Abstract. We have performed a Monte Carlo study of the dynamical phase diagram
of the two-dimensional p-state clock models for 4 € p € 10, by comparing the time
evolution of two configurations subjected to the sarme thermal noise. For p = 4, we
find the expected two phase structure, similar to the Ising case, with a transition
temperature which coincides with the known static one within the error bars. The
dynamical critical exponents are measured. For p 22 5 we observe, between the low-
temperature frozen phase and the high-temperature disordered one, two new phases,
which are not present for p € 4. The first is connected to the expected emergence
of a spin-wave phase, and the other may be a purely dynamical effect although its
connection to the soft phase might suggest the existence of a related equilibrium
property. The trapsition temperatures are determined and are found to satisy a
phenomenological duality-like relation.

1. Introduction

The Monte-Carlo dynamics in spin model simulations has been extensively studied, in
connection with the static critical properties of the systemn, principally with a view to
improving the performance of the computational method {1]. Recently a new meihod
of investigating the dynamics of spin systems has been proposed [2,3,4]. It is based on
the comparison of the time evolution of two initially different configurations subject
to the same thermal noise. A distance between the two configurations is defined.
From the behaviour of this quantity as a function of the temperature and/or the
initial conditions, cne can infer information on the dynamical phases of the model.
Alternatively, if the starting configurations are very close to each other, one can look

for the occurrence of chaotic behaviour, which may simulate the propaga.tlon of an

original small ‘damage’ [5].

The two-dimensional Ising model, which was used to test the method in [3], exhibits
the expected two-phase structure: a low-temperature phase where the two configura-
tions have a non-zero probability to belong to different valleys in the energy landscape,
dependi lg on the initial conditions, and then never meet each other (in the infinite
volume limit); a high-temperature phase in which the two configurations meet very
t E-mail address: LEROYER @ FRCPN11 (Bitnet}
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quickly. The transition temperature, determined via finite-size scaling arguments,
coincides with the Curie temperature T = 2.269.

The two-dimensional XY model has been investigated by Golinelli and Derrida, [4]
who found three different phases: the low-temperature one, where the distance be-
tween two configurations after a given time, depends on the initial conditions and is
non-zero; an intermediate phase where the distance no longer depends on the initial
conditions and but is still non-zero; and a high temperature phase where the two
configurations meet very quickly. The transition temperature between the low and in-
termediate phases is close to the Kosterlitz—Thouless one. The authors of [4] question
the origin of the intermediate phase and do not exclude the possibility that it is related
to some equilibrium property of the system. Although a more recent result [6]) might
favour a purely dynamical interpretation of this phase it is of interest to determine
which mechanism allows it to exist in the XY model and not in the Ising one.

The Z, symmetric clock model is defined by the classical Hamiltonian

H=-J) s-s (1)
(i)

where (i, j) runs over the lattice sites and their nearest-neighbours, and J is a pos-
itive ferromagnetic coupling. s, is the unit vector spin at site i whose orientation is
quantizesd to the p values

2r

g- = nl'_
D

13

n,=0,1,...,p-1. (2)

In terms of the angular variable 8; the partition function of the model is

2(6) = Y- exp (83 costts = 1)) 3)

{9;‘} (isj)

where 8 = J/T (in the following, we set J = 1).

This model interpolates between the Ising model (p = 2) and the XY model
(p = oo). Therefore, investigating the dynamical phase diagrams of these systems as
p increases might shed some light on the change of dynamical behaviour and on the
connection between dynamical phases and equilibrium properties.

The equilibrium phase diagram of the p-state clock model is rather well known.
For p € 4 it has an Ising-like critical behaviour with precisely known exponents and
critical temperature [7]. For p = 5 one expects the emergence of a soft spin-wave phase
between the low-temperature frozen one and the high-temperature disordered one
[8,9,10]. As p increases beyond p = 5, the lower transition temperature decreases to
zero to let only the two-phase (spin-wave, free-vortice) structure survive in the p = co
limit. The higher transition temperature decreases from T.(Z,) = 1T (Ising) = 1.135
to To(Z,,) = Tk =~ 0.9 {11].

In this paper we have investigated the dynamical phase diagram of the p-state
clock models numerically for p = 4, 5, 6, 7 and 10 by the method of distances. The
technical details are gathered in section 2. In section 3, on the basis of a detailed
investigation of the Z, and Z,; models we relate the different known static phases to
the dynamical ones, characterized by the evolution of distances. A dynamic critical
exponent is determined from the finite-size scaling analysis of a relaxation time for
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the Z, model. For the Z,; model, an unexpected high-temperature phase occurs
above the spin wave phase, extending from T = 1.0 up to 7' = 2.0, very similar to
the one observed in [4]. Section 4 is devoted to the Zg ¢ ; models. The same phase
structure is observed as in the Z|; case, already in the 25 model, marking a clear
difference with the Ising-like behaviour of the Z, ; , models. As p increases above 5
this phase structure persists, while the lower transition temperature decreases to zero,
as expected. We draw conclusions in the last section, and we propose a duality-like
relation between the different transition temperatures.

2. The method

The Z, clock model (equations (1)~(3)) is simulated on a L x L lattice (L = 10,20)
with periodic boundary conditions by means of the heat bath method. The high-
temperature behaviour of this dynamics is identical to the Metropolis one used in [4] as
two configurations evolving in the high-temperature phase will eventually meet. This
is a necessary condition for a comparison of our results with those of [4]. Furthermore,
for cur discrete model, the heat bath algorithm is slightly faster, at least for p < 10.

The variable n; at time ¢, (8; = n,(27/p)), is updated at time ¢ + 8¢ (6t = 1/L%),
according to the following rule.

(1) for all integers n € [O,p — 1] compute once the probabilities
J 2r
PV, n} = Z{V} (—J; cos(n ~ n;)— . )

where V is the set of sites neighbouring the site i, and Z{V,} is such that

p—1
Y P{V,n}=1
n=0
and then compute the cumulated probabilities

F{vil =0
k-1
PAV} =) P{Vin}  1<k<p-1

PV =1.

(ii) Draw a uniform random number z € [0,1]. If P, < z < Py, then set the new
value of n; to k.

The dynamics is studied in the following way. Take two different initial configura-
ttons €(0) = {6,;(0)} and C'(0) = {#{(0)} of the system and let them evolve according
to the heat bath dynamics, where at each step, the random number z is the same for
both configurations. The distance between the two configurations is defined as the
generalization of the one used for the Ising model

D) = 5 1 - 1P (4

5 01— cos(Bi(t) — ()], (%)
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This quantity is then suitably averaged over a sample of sequences of randorn numbers
as explained below.

On a finite lattice the probability for two configurations to meet is one in the
infinite time limit. Moreover, once the distance is zero it remains zero at any later
time. Therefore, if we start with N different initial pair of configurations, the number
of pairs which have not yet met at time ¢ (surviving configurations) N,g(t), decreases
monotically as the time grows, with a rate dependent on the phase in which the
system evolves. Consequently, the value of the distance, averaged over the whole
sample, will depend on time. As there is no obvious physical time scale to set a
cut-off, we proceed in another way. Actually the time evolution of the surviving
configurations is very stable in all phases, at least after a thermalization time ¢, which
depends on temnperature. We therefore compute the averaged distance only over those
configurations. As this quantity is rather constant with time it will not depend on the
time cut-off £, ..

We now define our averaging procedure. We start with a sample of N pairs of
initial configurations. We let them evolve with different sequences of random num-
bers, up to ¢t = ¢, where only Ng = N_g(t..,) have survived. If Ng = 0 we set
{D) = 0. Otherwise, for each surviving pair we first perform a time average from the
thermalization time ¢, up to 1., and then a sampling average over the N resulting
numbers. The error bars are obtained from the sampling average. This determina-
tion of the averaged distance is quite independant of ¢_,, and is very precise in the
low-temperature phase, even with samples as small as N = 20. In strongly fluctu-
ating phases, we take N = 100 to 200, depending on the linear lattice size. We set
trax = D00 for the smaller lattices (L = 10) and we adjust it by finite-size scaling
arguments for the larger ones (L = 20, 30—see section 3). This value of t,,, is chosen
by comparison with another relaxation time which drives the time dependence of the
survival probability

(1) = Ten®. ©

Assuming an exponential-like behaviour

) = Aexp(-1) (7)

we determine T by a two-parameter fit, as a function of the temperature. For our
choice, .., is taken to be order 7(T¢).

Finally, along with the averaged distance (D}, we determine the ‘susceptibility’

op(t) = V(D(t)) - (D(t))?

which measures the fluctuations of D(1) and is very sensitive to the change of phase.
The statistical errors on ¢, are estimated from the time average—which gives an
underestimation—and by averaging over several sets of random number sequences:
we make three to five measurements for some selected temperatures, We shall see in
the next sections that the behaviour of all these quantities as functions of the time,
temperature and initial conditions provide a set of information sufficient to clearly
characterize the different phases of the system.
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3. Characterizing the phases

3.1. The Z4 model

The Z, clock medel is a special case of the Ashkin-Teller model, and has a second-order
phase transition at To(Z,) = [In(v/2+ 1)]~! = 1.135 [7] separating a low-temperature
frozen phase from a high-temperature disordered one, similar to the Ising model. In
figure 1 we show the averaged distance (D) against the temperature for L = 10 and
L = 20 and for two different initial conditions.

Initialization 1: initial configurations completely polarized in opposite directions
8;(0) =0, 6;(0) ==, D(0) = 1.

Initialization 2: initial configurations completely polarized in orthogonal directions
0,(0) = 0, 8(0) = 7/2, D(0) = 0.5.

For both initializations, we observe an abrupt fall in the region 1.1 < T < 1.20, very
close to T, = 1.135. This behaviour is similar to what is observed in the two or
three dimensional Ising model [2,3]. It is also in agreement with the picture of valleys
in the free energy landscape, which attract the time evolution of the configurations
and consequently of the distances between the configurations, depending on the initial
conditions. As an illustration of this effect, we show in figure 2 the distribution of the
non-zero distances after t = 500 for a 10 x 10 lattice for pairs of configurations initially
randorn and opposite. At T' = 1.0, the double peak seen in figure 2 clearly shows that
after some time the non-zero distances are distributed along the two atiraciors at
{D) = 1, corresponding ¢/ —8; = = Vi, and (D) = 0.5 corresponding to #/—8, = 7/2 Vi.
For the equivalent distribution at T = 1.2 (hatched histogram), in the disordered
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Figure 1. The averaged distance against temperature for the Z; model. Open
circles, L = 10, aligned and opposite initial configurations; open triangles, L = 10,
aligned and orthogonal initial configurations; full circles, I = 20, aligned and opposite
initial configurations The dotted line indicates the static critical temperature T, =
1.135.
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Figure 2. The distribution of distances after t=500 for the Z; model on a 10 x 18
lattice. The hatched histogram corresponds to T' = 1.2 (symmetric phase) and the
other to T = 1.0 (broken symmetry phase).

These observations establish a good agreement between the static and the dynam-
ical behaviour and we turn now to more quantitative information. First we notice
that a precise determination of the transition temperature is difficult to achieve by
using only the averaged distance. In fact, for T' > T{;, the distances fluctuate strongly
and reach zero after a short time; but the average, being taken only over the non-zero
distances, remains sizeable. We then decide to set the distance to zero when the num-
ber of surviving configurations is less than 10% of the initial sample. This somewhat
arbitrary cut-off prevents us from making a precise quantitative determination of the
position of the critical temperature and then of the other critical parameters, from
the averaged distance only. Therefore we turn to o, which measures the fluctuations
of D(t) and should be very sensitive to the phase change for the above reasons.

We show the variations of ¢, against the temperature in figure 3 for L=10 and
L=20. A sharp peak signals the critical temperature with a rather small finite-size
effect. Consequently, in the following, we shall characterize the transition temperature
between a ferromagnetic and a disordered phase by the temperature where o, exhibits
an abrupt jump.

Finally, we determine the dynamic critical exponent of the exponential slope 7 of
the survival probability, equations (6) and (7). Assuming a finite-size behaviour

(T, L} = L* f(|T - Tc|L'"*)

we have measured 7(T = T) for L = 10,15,20,30 for the two initial conditions,
initializations 1 and 2 defined above. From the results, displayed in figure 4 we get

z=2778+4+0.11 for initialization 1
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Figure 3. The distance susceptibility op as a function of the temperature for the
Zy model and L = 10 (open circles) and L = 20 (full circles). The full and broken
lines are guides to the eye. The dotted line indicates the position of T¢.
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Figure 4. The exponential slope of the survival probability for the Z; model at
T = Tc = 1.135 as a function of the lattice size, for [ = 10,15,20,30. The full
circles correspond to initial configurations aligned and opposite; the open circles to
aligned initial configurations but with #; — 8/ = x /2. The straight lines correspond
to fitking 7 ~ L* with z = 2.29 {open circles) and z = 2.78 {full circles).

2 =2.2940.07 for initialization 2.

These small errors are only of statistical origin and they presumably underestimate
possible corrections to the asymptotic scaling law due to the rather small lattice sizes.
However, the value of 7 for initialization 2 is compatible with that obtained in [3] and
this may be an indication for some kind of universality similar to what is found for
the Potts model dynamics in [12]. The larger value for the exponent in the case of
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initialization 1 may be understood by the fact that configurations leaving the (Dy=1
attractor have a non-zero probability to fall into the (D) = 0.5 one, before eventually
being trapped in the zero-distance state. Such intermediate attractors, between the
fully polarized opposite spin configuration one ({D} = 1) and the zero-distance one
occur in the Z, models only for p 2> 4.

3.2. The Z,, model

The Z, model is known to have a Kosterlitz-Thouless {KT) like phase transition for p
large enough [13]. This critical behaviour is assumed to be present already in the Z4
mode] which has been investigated in [14]. Three phases are observed: the spin wave
phase is found between a low-temperature ferromagnetic one, and a high-temperature

symmetric phase. The higher transition temperature is close to that of the XY model
(ﬂ 9 < T < 1 ﬂ\ We now turn to the rl\mamn- behaviour of the model.
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Figure 5. The averaged distance as a function of the temperature for the Z15 model.
Open and full circles correspond to L = 10 and L = 20 lattices respectively, and to
initial configurations aligned and opposite. The triangles are for an L = 10 lattice
with initial configurations fully polarized along directions making an angle of 7/5.
The dotted line indicates the position of the first transition at Ty = 0.24.

We display in figure 5 the averaged distance as a function of the temperature
for the L = 10 and L = 20 lattices and fully polarized opposite spin initialization
(initialization 1). A sharp drop, observed for T =~ 0.24, signals a first transition
which is confirmed by the behaviour of o shown in figure 6. However the nature
of the high-temperature phase is clearly different from a standard paramagnetic one,
as neither (D) nor o, decreases to zero (see subsection 3.1}. The time dependence
of the distances in this phase is revealed in figure 7 where we have plotted the time
history of a single pair of configurations at T’ = 0.25. As both configurations evolve,
their distance jumps from one attractor to another. These attractors correspond to
the distance between configurations such that

%—&:k% Vi ke(1,4]
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Figure 6, The distance susceptibility #p as a function of the temperature for the
Z10 model for L = 10 (open circles) and L = 20 (full circles).
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Figure 7. The time evolution of the distance between two configurations which are
initially fully polarized in opposite directions and at T = 0.25 and for L = 20. The
dashed lines indicate the position of the different attractors (Dy} = sin?(k7/10),

which yields
(D) = sin*(kw/10).

In figure 8 we show the distribution of the distances at { = 1000 for a sample of
200 pairs of configurations at 7" = 0.25. The histogram is sharply peaked along
the attractors (D).}, in agreement with behaviour seen in figure 7 and which can be
interpreted in terms of a strongly fluctuating phase. Indeed, in the spin wave phase
the correlation length is infinite and the magnetization fluctuates without limit. The
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Figure 9. The survival probability at tmax as a function of the temperature for the
Z10 model. The open circles correspond to I = 10 and tmax = 1000 whereas the full
circles are for L = 20 and tmax = 4000.

dynamics revealed by the time evolution of the distance is consistent with such a
behaviour of the system.

The dependence upon the initial conditions of the time evolution is another char-
acteristic difference between the two phases. We have computed the averaged distance
for initial configurations fully polarized with spins making the smallest possible angle
§ = ¢ corresponding to D(0) = 0.095 (initialization 2). We observe in figure 5 the
same change of regime as for initialization 1. Furthermore, there is a loss of initializa-
tion dependence for T > 0.24 which is in agreement with the above argument of large
dynamical fluctuations. This result is somewhat different with that of [4] where the
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spin wave phase is characterized by a strong dependence on initial conditions. Indeed,
this discrepancy reflects the arbitrariness of the choice of the time cut-off £,,. As we
take ¢, longer than the characteristic relaxation time for the transition between two
attractors, our distance is subjected to the fluctuations seen in figure 7 irrespective of
the initial conditions. In [4], ¢, __ being smaller than this relaxation time, the system
appears to be blocked in the attractor selected by the initial conditions.

A second transition, which is less well-localized, occurs for 0.9 £ T < 1.2. Its
presence is not visible in the variations of (D) and it manifest itself in figure 6 as a
small drop in the behaviour of o, with the temperature. It is more clearly evident
in figure 9, in the variation of the survival probability with T which slowly decreases
as the temperature grows from T = 0.24 to T =~ 1.0. A change of regime is marked
by a sudden increase of p,{t.,,,} which remains maximum for 1.0 € T < 2.0. For
T =~ 2.0 an abrupt fall of p,(1,,,.) down to zero, signals the transition to the high-
temperature paramagnetic phase. In this intermediate region, between T ~ 1.0 and
T ~ 2.0, the system evolves with small fluctuations, as in a ferromagnetic phase, but
with no dependence on the initial conditions. This unexpected regime is similar to
the one found in [4].

It may result from a partial breaking of the full Z,, symmetry inte a Z; or Z,
residual one. However, we shall see in the next section that a similar behaviour is
observed for the Z; and the Z; models where such a mechanism is not allowed. In the
next sections, we discuss the possible connection between this phase and some equi-
librium property of the systemn. Alternatively, it could result from a pure dynamical
effect as the analysis of Golinelli [6) may suggest.

To conclude this section, we stress that the method of distances leads to a clear
identification of four different dynamic phases in the Z;, model, with three tran-
sition temperatures, 7} = 0.24, T, =~ 1.05 and T; = 2.0. The lowest and highest
temperature phases correspond to the static ferromagnetic and paramagnetic ones,
respectively. The first intermediate phase, for T} £ T € T3, is related to the expected
spin wave phase, whereas the other intermediate phase for T, < T° € T} has no known
equilibrium equivalent. The transition temperature T, is difficult to locate precisely
due to large finite-size effects, but our rough determination is compatible with the
static value found in ref [14] T' = 1.0.

4. The models Z, for p = 5,6, 7

The full Z; symmetric model as well as its ‘clock’ restricted version, have been in-
vestigated using renrormalization group methods [8], mean field approximations [9]
and perturbative expansions [10]. All of these analyses confirm the emergence of a
soft phase in a very narrow range of temperature, with a Kosterlitz—Thouless type
transition.

We have performed the same analyses as in section 3 for the Z; model. The results
are displayed in figures 10, 11 and 12, for the averaged distance, o, and p (1. ..) re-
spectively, and may have to be compared to their equivalent for the Z, model (figures 2
and 4) and for the Z;; model (figures 5, 6 and 9). The data are clearly incompatible
with a unique classical second order transition at the self-dual temperature Tc = 0.923,
as in the Z, model. Instead, we observe the same behaviour as in the Z; case for all
our results, We distinguish a first transition at T, =~ 0.8, marked by the abrupt jump
in o, (figure 11), followed by a soft phase, clearly indentifiable by the persistently
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Figure 10. As figure 6, but for the Z5 model.
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Figure 11. As figure 7, but for the Z5 model.

large value of &5 over a rather broad interval of temperature. The second transition
is signalled by the sudden rise in the survival probability for 1.0 € T, < 1.2, which
remains maximum up to T; =~ 1.8 where it falls to zero.

In conclusion, the dynamic phase diagram of the Z; model exhibits the same
structure as in the Z,, case, with three transitions at T, ~ 0.8, 1.0 € T, £ 1.2 and
Ty~ 1.8

The first point concerns the clear evidence for the strongly fluctuating regime
found between T, and 75, which is presumably linked to the emergence of a spin-wave
like phase, but in a range of temperature wider than expected in the static case [10].

The second point concerns the intermediate phase between T, and Ty, already
observed in the Z,; and XY models, but not present in the Z, models for p < 4. This
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Figure 12. As figure 10, but for the Z5 model.
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Figure 13. The dynamical transition temperatures of the Z; models as a function
of 1/p and the XY model (p = oo} result of Golinelli and Derrida.

phase has no obviously known static equivalent, but since it occurs only in conjonetion
with the soft phase one could be tempted to connect the two transition points 75 and
T, within a same interpretation. The suggestion of Garel ef af [15] of the existence
of a disordered line crossing the paramagnetic phase is an appealing one and deserves
further investigation.

We have reproduced the analysis for the Z; and the Z; models and found exactly
the same dynamic phase diagram as in the Z; and Z,; cases. The transition tem-
peratures are presented in figure 13 as a function of 1/p with the asymptotic value of
the XY model obtained by Golinelli and Derrida {4]. The transitions at T} and T}
are clearly marked and, being subject to small finite-size effects, their determination
is rather precise. In contrast, an accurate measurement of 7, is difficult due to the
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essential point nature of the singularity, and one would need very large lattices and
finite-size scaling analysis to get reliable and precise numbers [16). Since our purpose
is not a determination of the critical exponents, we only give a rough estimate of 75,.

We first observe in figure 13, that the transition temperature T, decreases as p
grows, in conformity to what is expected for the associated static critical temperature,
whereas the interval delimiting T,, although quite stable, seems to slowly decrease
and may reach, as p — oo, a value compatible with the measured dynamical critical
temperature of the XY model Ty =~ 0.95 [4]. The upper transition temperature
seems to extrapolate to a higher value than the XY one.

Duality arguments are used to relate the static critical temperatures T, and T, of
the fully Z, symmetric models [9,10], based on the Hamiltonian formulation, and of
the generalized Villain model [8,17]. For this last model, one can derive the relation

Ty =Tgp (8)

where Ty = 2#/p is the point where the model is symmetric under the duality
transformation.

For the classical 7, clock model the duality transformation generates additional
couplings and it is no longer a symmetry of the Hamiltonian. Therefore there is
no relation equivalent to (8). But for each value of p, one ¢an find a temperature
where these additional couplings are zero (exactly for Z;) or small, making the model
approximately self-dual. Let us call Ty, this temperature obtained by solving the
duality equations of [9]. We find that the dynamical transition temperatures T, and T,

and the self-dual one defined above, are in good agreement with a relation equivalent to
Pnllahnn R ag for p= l-'; ﬁ 7 10 we obtain T,?._ /'T‘ 'f‘_. =0 Qﬂ 0 07\ ﬁ()ﬂ 'l rp:nprh\n:-l\i
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We mterpret this phenomenologlca.l result as a conﬁrmatlon of the lmk between the
dynamic transition temperatures T, and T, and their equilibrium equivalent.

5. Conclusion

The heat bath dynamics of the Z, symmetric clock models has been studied for p = 4,
3, 6, 7 and 10 by comparing the Monte-Carlo time evclusion of two configurations,
initially in different states, and evolving according to the same thermal noise.

The dynamic phase diagrams are quite different for p = 4 and for p = 5. In
the first case, one observe two phases, which are identified as the ferromagnetic and
paramagnetic equilibrium ones, with a transition temperature which coincides with
the static one within the precision of the method. Although not presented here, we
have obtained equivalent results for the Z3 and Z, (Ising) models as a check of our
method,

For p 2 5, we find four different phases. Between the low-temperature ferromag-
netic phase and the high-temperature paramagnetic one, a strongly fluctuating phase
occurs, related to the soft spin-wave equilibrium one, together with a new unexpected
phase, similar to the one found in the XY model [4]. It is characterized by a very
sharply peaked distribution of distances, small fluctuations in the time evolution, and
an averaged distance which decreases roughly linearly, independent of the initial con-
ditions,

As this phase only appears, in the sequence of the Z, models, in conjunction with
the soft phase, one may think of an interpretation in fprme of some equilibrium state

© oLy paast, L Il AOUI Gl sIEVCE pITVANIURL 222 VRAINT WL owaiat LRl ol

of the gas of vortices. Thls has been suggested by Garel et al [15] for t,he XY model,
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However, a similar effect appears in very different systems like the spin glasses [2],
or in a dilute ferromagnetic model [6], where it has been exactly shown to have a
putely dynamical origin. Moreover, in a recent study of the XY mode! based on a
dynamics which preserves the O(2) invariance [18], this phase is not observed. All
these results suggest interpreting this phase as a dynamical one, but its real nature is
still far from clear and deserves further study.

The method of distances has given a qualitatively good insight into the dynamics
of the clock model, but accurate quantitive results are not easy to cbtain, mainly
due to the large fluctuations and finite-size effects inherent to the Kosterlitz—Thouless
transition. However, our results for the transition temperatures are in agreement with
a phenomenological duality-like relation inspired from the generalized Villain model.
This support the connection between the dynamic transitions and the equilibrium
ones.

Finally we notice that the soft phase is clearly observable in the clock Z; model,
unlike the general Z, symmetric one where it appears as a small effect [10]. We
conclude that the distance method is very sensitive to the phase changes and may be
a fruitful technique for exploring unknown phase diagrams.
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